Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Semi-analytic modelling furnishes an efficient avenue for characterizing dark matter haloes associated with satellites of Milky Way-like systems, as it easily accounts for uncertainties arising from halo-to-halo variance, the orbital disruption of satellites, baryonic feedback, and the stellar-to-halo mass (SMHM) relation. We use the SatGen semi-analytic satellite generator, which incorporates both empirical models of the galaxy–halo connection as well as analytic prescriptions for the orbital evolution of these satellites after accretion onto a host to create large samples of Milky Way-like systems and their satellites. By selecting satellites in the sample that match observed properties of a particular dwarf galaxy, we can infer arbitrary properties of the satellite galaxy within the cold dark matter paradigm. For the Milky Way’s classical dwarfs, we provide inferred values (with associated uncertainties) for the maximum circular velocity $$v_\text{max}$$ and the radius $$r_\text{max}$$ at which it occurs, varying over two choices of baryonic feedback model and two prescriptions for the SMHM relation. While simple empirical scaling relations can recover the median inferred value for $$v_\text{max}$$ and $$r_\text{max}$$, this approach provides realistic correlated uncertainties and aids interpretability. We also demonstrate how the internal properties of a satellite’s dark matter profile correlate with its orbit, and we show that it is difficult to reproduce observations of the Fornax dwarf without strong baryonic feedback. The technique developed in this work is flexible in its application of observational data and can leverage arbitrary information about the satellite galaxies to make inferences about their dark matter haloes and population statistics.more » « less
-
Abstract When dark matter has a large cross section for self scattering, halos can undergo a process known as gravothermal core collapse, where the inner core rapidly increases in density and temperature.To date, several methods have been used to implement Self-Interacting Dark Matter (SIDM) in N-body codes, but there has been no systematic study of these different methods or their accuracy in the core-collapse phase. In this paper, we compare three different numerical implementations of SIDM, including the standard methods from the GIZMO and Arepo codes, by simulating idealized dwarf halos undergoing significant dark matter self interactions (σ/m= 50 cm2/g).When simulating these halos, we also vary the massresolution, time-stepping criteria, and gravitational force-softening scheme. The various SIDM methods lead to distinct differences in a halo's evolution during the core-collapse phase, as each results in spurious scattering rate differences and energy gains/losses.The use of adaptive force softening for gravity can lead to numerical heating that artificially accelerates core collapse, while an insufficiently small simulation time step can cause core evolution to stall or completely reverse. Additionally, particle numbers must be large enough to ensure that the simulated halos are not sensitive to noise in the initial conditions. Even for the highest-resolution simulations tested in this study (106particles per halo), we find that variations of order 10% in collapse time are still present.The results of this work underscore the sensitivity of SIDM modeling on the choice of numerical implementation and motivate a careful study of how these results generalize to halos in a cosmological context.more » « less
-
ABSTRACT We combine the isothermal Jeans model and the model of adiabatic halo contraction into a semi-analytic procedure for computing the density profile of self-interacting dark-matter (SIDM) haloes with the gravitational influence from the inhabitant galaxies. The model agrees well with cosmological SIDM simulations over the entire core-forming stage up to the onset of gravothermal core-collapse. Using this model, we show that the halo response to baryons is more diverse in SIDM than in CDM and depends sensitively on galaxy size, a desirable feature in the context of the structural diversity of bright dwarfs. The fast speed of the method facilitates analyses that would be challenging for numerical simulations – notably, we quantify the SIDM halo response as functions of the baryonic properties, on a fine mesh grid spanned by the baryon-to-total-mass ratio, Mb/Mvir, and galaxy compactness, r1/2/Rvir; we show with high statistical precision that for typical Milky-Way-like systems, the SIDM profiles are similar to their CDM counterparts; and we delineate the regime of core-collapse in the Mb/Mvir − r1/2/Rvir space, for a given cross section and concentration. Finally, we compare the isothermal Jeans model with the more sophisticated gravothermal fluid model, and show that the former yields faster core formation and agrees better with cosmological simulations. We attribute the difference to whether the target CDM halo is used as a boundary condition or as the initial condition for the gravothermal evolution, and thus comment on possible improvements of the fluid model. We have made our model publicly available at https://github.com/JiangFangzhou/SIDM.more » « less
An official website of the United States government
